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1. Introduction

Vibration and stability characteristics of composite laminates under thermo-mechanical loads have
attracted the attention of many researchers in recent years as they are being increasingly used in thin walled
structural components of aerospace, defense, reactor vessels and other high performance application areas.
These studies were reviewed and well documented by Tauchert [1] and Noor and Burton [2]. It is observed
from the existing literature that, the static buckling and postbuckling behavior of thermo-mechanically loaded
rectangular and circular plates have been studied by many researchers. However, limited work has been done
on the dynamic characteristics of thermally stressed/buckled laminated plates. Moreover, similar studies on
thermo-mechanical vibration and stability characteristics of laminated composite plates other than
rectangular/circular geometry have been sparsely treated in the published literature.

Thermal load not only influences the stability characteristics of structures, but also changes its vibration
frequencies. The notable recent contributions pertaining to small amplitude vibration behavior of thermally
stressed/buckled rectangular composite plates may be found in Refs. [3–8]. Chang and Jen [3] studied
influences of temperature change and large amplitude on the period of vibration of orthotropic rectangular
plates. Noor and Burton [4] investigated the free vibration behavior of thermally stressed angle-ply composite
plates using a three-dimensional thermo-elastic model. Librescu and Lin [5] employed single-term Navier-type
double sine function to study the vibration behavior of thermo-mechanically loaded flat and curved composite
panels taking into account interlaminar shear traction continuity requirement and considering a higher order
shell theory.

For accurate solution, the assumed mode shape function in the analytical approach should have more
terms, thus leading to more numerical work. Numerical methods, like the finite element method is prefer-
able as there is no need for an a priori assumption of the mode shapes as the solution itself predicts the
mode shapes. Lee and Lee [6] used the finite element method to investigate the vibration characteristics of
thermally stressed composite plates in the pre- and postbuckling states. Similar studies on the vibration fre-
quencies of thermally buckled piezolaminated composite plates, and composite plates embedded with shape
memory alloy fibers were reported by Oh et al. [7] and Park et al. [8]. Moreover, the authors [6–8] employed
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Newton–Raphson method to solve the nonlinear finite element equations and reported the first three natural
frequencies in the thermal postbuckling region, omitting the possibility of secondary instability. But, von-
Karman plates do exhibit secondary bifurcation [9] and corresponding mode jump [10–12] in their primary
postbuckling path. This secondary instability was also reported in the literature by Ganapathi and Touratier
[13], Singha et al. [14,15] and Thankam et al. [16], while investigating the thermal postbuckling behavior of
composite plates using the finite element method. However, studies on vibration characteristics of thermally
buckled composite plates with attention to its stability considerations in the primary postbuckling path are
scarce in the open literature.

Similar studies on the vibration and stability characteristics of composite skew plates have received little
attention of the researchers, despite its wide application in the aerospace industry [17]. Recently Kant and
Babu [18] carried out thermal buckling analysis of composite and sandwich skew plates using the finite element
method, while Singha et al. [15] employed shear deformable finite element to investigate the thermo-
mechanical postbuckling behavior of laminated composite skew plates. Although, linear free vibration
analysis of composite skew plates attracted attention of the researchers in recent years [19,20], vibration
analysis of thermally stressed/buckled composite skew plates appears to be scarce in the literature. Ganesan
and Dhotarad [21] investigated the vibration behavior of thermally stressed isotropic rectangular and skew
plates. However, to the best of the authors’ knowledge, the work on the vibration analysis of thermally
stressed/buckled composite skew plates is not yet commonly available in the published literature despite its
practical significance.

In the present study, a four-noded shear flexible quadrilateral high precision plate bending element [15] is
extended to analyze vibration characteristics of thermally stressed composite skew plates in the pre- and
postbuckling states. As the element is free from locking phenomenon, all the energy terms are evaluated using
full numerical integration scheme. The formulation includes in-plane and rotary inertia effects. The initial
imperfections are not considered in the analysis. The nonlinear finite element equations are solved as a
sequence of linear eigenvalue problems to trace the thermal postbuckling paths [13–15]. The small amplitude
vibration characteristics of thermally stressed composite skew plate are obtained from the linearized equation
of motion [6–8]. Limited parametric study is carried out to investigate the influences of the skew angle, lay-up
and boundary conditions on the temperature–frequency interaction of laminated skew plates. The present
study reveals the ‘‘mode shifting’’ or ‘‘exchange of vibration modes’’ in the thermal postbuckling path.

2. Finite element formulation

Fig. 1 shows the rectangular Cartesian coordinate system along with the associated covariant base vectors (g1,
g2, g3) and contravariant base vectors (1g, 2g, 3g) for the skew plate having a and b as the length and width, and c
as the skew angle. A four-noded shear deformable quadrilateral plate element with ten degrees of freedom (u0

1; u
0
2

u3; u3,1; u3,2; u3,11; u3,12; u3,22; g1 and g2) per node is used in the present study. Here, u0
1; u

0
2, and u3 are mid-surface

displacements, g1 and g2 are rotations due to shear, and (),i represents the partial differentiation of the variable
preceding it with respect to ir, the contravariant components of the position vector r (r ¼ 1rg1+

2rg2+
3rg3).

The linear polynomial shape functions are employed to describe the field variables corresponding to in-plane
displacements (u0

1; u
0
2Þ and rotations due to shear of the middle surfaces (g1, g2), whereas, quintic polynomial

function is considered for the lateral displacement (u3) and are expressed as follows:

u0
1 ¼ ckð

1rÞið2rÞj ; i; j ¼ 0; 1 and k ¼ 1; 4

u0
2 ¼ ckð

1rÞið2rÞj ; i; j ¼ 0; 1 and k ¼ 5; 8

u3 ¼ ckð
1rÞið2rÞj þ ckð

1rÞmð2rÞn þ ckð
1rÞnð2rÞm;

i; j ¼ 0; 1; 2; 3; m ¼ 0; 1; n ¼ 4; 5; and k ¼ 9; 32

g1 ¼ ckð
1rÞið2rÞj ; i; j ¼ 0; 1 and k ¼ 33; 36

g2 ¼ ckð
1rÞið2rÞj ; i; j ¼ 0; 1 and k ¼ 37; 40, ð1Þ

where ck are constants and are expressed in terms of nodal displacements in the finite element discretization.
The full integration scheme with 6� 6 Gaussian integration rule is adopted for computing the element mass
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Fig. 1. The oblique coordinate system for the skew plate.
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matrix whereas, 4� 4 Gaussian integration rule is used to calculate the element stiffness matrix. The in-plane
and rotary inertia effects are included in the present analysis. The details of element formulation are reported
elsewhere [15] and are not given here for the sake of brevity. It has good convergence properties and has no
spurious rigid modes.

Following standard procedure, the governing equation of motion of the plate is written as

½M�f€dg þ ½K � þ
1

2
½N1� þ

1

3
½N2� þ l½Kgm�

� �
fdg ¼ lfFTg, (2)

where [M] is mass matrix, [K] the linear stiffness matrix, [N1] and [N2] are first- and second-order nonlinear
incremental stiffness matrices, respectively; [Kgm] and {FT} are geometric stiffness matrix and load vector due
to unit temperature rise, l the temperature parameter and {d} the displacement vector.

3. Solution procedure

To analyze the free vibration of thermally buckled laminated plates, the solution of differential equation (2)
is assumed to be sum of a time-independent and a time-dependent solutions such as fdg ¼ fdsg þ fdtg. Here,
{ds} is time-independent particular solution, which means the static thermal postbuckling deflection, and {dt}
is the time-dependent homogeneous solution with small magnitude. Here, the subscripts ‘s’ and ‘t’ indicate the
static and dynamic displacements, respectively. Substituting the assumed solution into the equation of motion
(2), two sets of equations are obtained [6–8] as

½K � þ
1

2
½N1� þ

1

3
½N2� þ l½Kgm�

� �
fdsg ¼ lfFTg, (3)

½M�f€dg þ ½½K � þ ½N1� þ ½N2� þ l½Kgm��fdtg ¼ f0g. (4)

Here, Eq. (3) represents the static thermal postbuckling behavior whereas Eq. (4) represents the small
amplitude vibration of thermally stressed/buckled plate. It may be noted that, the sum of stiffness matrices in
Eq. (4) equals the tangent stiffness matrix.
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3.1. Thermal postbuckling

In the present study of symmetric laminated plates under uniform temperature rise, only the membrane
forces are generated and the governing equation for the thermal postbuckling analysis is written as

½K� þ
1

2
½N1� þ

1

3
½N2� þ l½Kgm�

� �
fdsg ¼ f0g. (5)

Here, the force vector in the right-hand side is zero, since the temperature effects (membrane forces) are
accounted in the geometric stiffness matrix. The scalar multiplier l, associated with geometric stiffness matrix,
represents the temperature load. The thermal postbuckling problem is solved as a series of linear eigenvalue
problem each one of them associated with different amplitudes of deflection [13–15].

3.2. Vibration of thermally buckled plate

Noting that the variation of displacement with time is harmonic, we could express Eq. (4) as the nonlinear
algebraic equation of the form

½½K � þ ½N1� þ ½N2� þ l½Kgm��fdg � o2½M�fdtg ¼ f0g. (6)

Small amplitude vibration of thermally stressed composite plate is obtained by solving Eq. (6) as a
generalized eigenvalue problem. In the prebuckling state, the nonlinear incremental stiffness matrices ([N1]
and [N2]) are zero. After buckling, the incremental stiffness matrices are calculated at the updated equilibrium
position, obtained from static thermal postbuckling analysis.

In the present analysis, the static thermal postbuckling temperature is obtained first and then the small
amplitude free vibration frequencies of composite skew plates are evaluated at the corresponding thermally
buckled state. Thereafter, the next equilibrium position is determined.

4. Results and discussions

The present study is focused on the small amplitude free flexural vibration characteristics of thin laminated
composite skew plates under thermal load. Based on the progressive mesh refinement, 10� 10 mesh is found to
be adequate to model the full skew plate. The material properties used in the present analysis are

EL=ET ¼ 40:0; GLT=ET ¼ 0:6; GTT=ET ¼ 0:5; nLT ¼ 0:25; aL ¼ 10�06; aT ¼ 10�05,

where E, G, n and a are Young’s modulus, shear modulus, Poisson’s ratio and thermal expansion coefficient,
respectively. Subscripts L and T represent the longitudinal and transverse directions, respectively, with respect
to the fibers. All the layers are of equal thickness. The boundary conditions considered here are:

simply supported on all sides ðSSÞ : u1 ¼ u2 ¼ u3 ¼ 0 along the boundary nodes;

clamped on all edges ðCCÞ : u1 ¼ u2 ¼ u3 ¼ 0; u3;1 ¼ 0 at 1r ¼ 0; a

u1 ¼ u2 ¼ u3 ¼ 0; u3;2 ¼ 0 at 2r ¼ 0; b.

Before proceeding for the detailed study of small amplitude vibration characteristics of thermally stressed/
buckled composite skew plate, the formulation developed herein is validated against the linear free vibration
of laminated composite skew plate. The non-dimensional natural frequencies ($ ¼ oa2=p2h

ffiffiffiffiffiffiffiffiffiffiffiffi
r=ET

p
; a and h

are length and thickness of the plate, and r is the mass density) obtained for simply supported (SS) and
clamped (CC) angle-ply [451/�451/451/�451/451] skew plates are presented in Table 1 along with the analytical
solutions [19], and they match very well. The efficacy of the present element in thermal postbuckling analysis
has already been reported earlier [15]. Moreover, the element is free from locking and any spurious zero-
energy mode.
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Table 1

Comparison of non-dimensional natural frequencies ($ ¼ oa2=p2h
ffiffiffiffiffiffiffiffiffiffiffiffi
r=ET

p
) of five-layered angle-ply [451/�451/451/�451/451] laminates

for various skew angles c (a/b ¼ 1; a/h ¼ 1000.0)

B.C. Skew angle Modes

1 2 3 4 5 6

SS 0 Present 2.4339 4.9859 6.1814 8.4849 10.2506 11.6433

Ref. [19] 2.4339 4.9865 6.1818 8.4870 10.2536 11.6464

30 Present 2.6118 5.6890 6.8308 9.4737 11.8828 13.2258

Ref. [19] 2.6119 5.6902 6.8316 9.4773 11.8900 13.2355

45 Present 3.3187 6.8972 9.6861 10.7119 15.5093 16.1214

Ref. [19] 3.3182 6.9002 9.6908 10.7206 15.5318 16.1447

CC 0 Present 3.8996 7.1426 8.4532 11.2008 13.3040 14.7223

Ref. [19] 3.9009 7.1464 8.4585 11.2112 13.3216 14.7425

30 Present 4.5425 8.3787 9.8764 12.8428 15.6673 17.4547

Ref. [19] 4.5431 8.3819 9.8810 12.8533 15.6906 17.4889

45 Present 6.2903 10.7941 14.4487 15.4235 20.9774 21.9865

Ref. [19] 6.3048 10.8193 14.4949 15.4692 21.0620 22.0759
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Thereafter, a detailed numerical study is carried out for small amplitude vibration behavior of thermally
stressed laminated skew plates for which results are not available in the literature. The effects of temperature
on the stability and vibration characteristics of a simply supported five-layered cross-ply [01/901/01/ 901/01]
skew plate (a=b ¼ 1, a=h ¼ 100:0) are reported in Fig. 2(a)–(d). Fig. 2(a) represents the static thermal
postbuckling path for different values of skew angle (c). It is observed from the figure that, initially the plate
maximum displacement increases (wmax/h) with the increase in temperature followed by a sudden instability
(drop in the postbuckling resistance) in the postbuckling path. Thereafter, the temperature again increases
marginally with the increase in maximum displacement (wmax/h). This sudden instability in the postbuckling
path is termed as ‘‘secondary instability’’ [9,13–15] and is associated with redistribution of buckling mode
shape as observed in Fig. 3, where the buckling modes before and after the secondary instability are plotted. It
may be noted that, initially when the plate is in the primary post buckling path, the displacement shapes are
symmetric with the maximum displacement (wmax) occurring at the center of the plate. However, after
transition to secondary postbuckling path, the displacement shapes become unsymmetrical with respect to
plate central lines and the maximum deflection shifts towards one side of the plate in the case of cross-ply plate
and towards one corner in the case of angle-ply plate [14,15].

The lowest three natural frequencies of the thermally stressed laminated simply supported skew plates
are presented in Figs. 2(b)–(d) in the pre- and postbuckled states for skew angles 01, 301 and 451, res-
pectively. The frequency–temperature relation is plotted up to the secondary buckling temperature, as this
may be assumed as the maximum load carrying capacity. From the figures, it is observed that, all
the frequencies decrease with the increase in temperature, and the first (1, 1) frequency becomes zero at the
first buckling point. However, in the postbuckling region, the first frequency (1, 1) increases, while the
other frequencies (1, 2) and (2, 1) decrease with the increase of temperature. The corresponding vibration
modes at different amplitudes (wmax=h ¼ 0:2, 0.4, and 0.5) of postbuckling state for the case of square
cross-ply plate are presented in Fig. 4. As the temperature increases, the fundamental frequency changes to a
form corresponding to next higher mode (1, 2). Here, the crossing of frequencies between mode (1, 1) and
mode (1, 2) occurs at a temperature of 96.48 1C (wmax=h ¼ 0:455). This phenomenon may be termed as ‘‘mode
shifting’’ (exchange of vibration modes). This exchange of vibration modes occurs in between primary and
secondary instability temperature for all the cases. Moreover, the fundamental frequency (1, 2) decreases as
the temperature is increased and approaches zero at the secondary instability point (wmax=h ¼ 0:55,
T ¼ 110:78).

The similar studies on stability and vibration characteristics of simply supported and clamped five-layered
angle-ply [451/�451/451/�451/451] skew plates are carried out and presented in Figs. 5 and 6, respectively. The
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Fig. 3. The buckling mode shapes before and after the secondary instability.
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Fig. 2. Stability and vibration characteristics of thermally stressed simply supported five-layered cross-ply [01/901/01/901/01] plate

for various skew angles c (a=b ¼ 1; a=h ¼ 100:0; non-dimensional frequency, $ ¼ oa2=p2h
ffiffiffiffiffiffiffiffiffiffiffiffi
r=ET

p
), (a) Static thermal postbuckling path,

(b) temperature-frequency curves (c ¼ 01), (c) temperature-frequency curves (c ¼ 301) and (d) temperature-frequency curves (c ¼ 451).
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Fig. 4. The vibration mode along the postbuckling paths.

M.K. Singha et al. / Journal of Sound and Vibration 296 (2006) 1093–1102 1099
secondary instability is observed for all the cases; however, its location depends on skew angle, fiber
orientation and boundary condition. The temperature–frequency interaction curve is similar for all the cases.
The first frequency (1, 1) always approaches zero at the critical buckling temperature and then slowly increases
with the increase of temperature. The other frequencies decrease monotonically with the increase of
temperature and the second frequency (1, 2) approaches zero at the secondary buckling temperature.
5. Conclusions

The small amplitude vibration characteristics of thermally stressed laminated composite skew plates are
studied using a shear deformable finite element. The analysis reveals the possibility of secondary instability in
the primary postbuckling path. The first three natural frequencies are studied in the pre- and postbuckled
states till the point of secondary bifurcation. Limited parametric study has been carried out to study the



ARTICLE IN PRESS

0 50 100 150
0

2

4

6

8

0 50 100 150 200
0

2

4

6

8

10

T
em

pe
ra

tu
re

 (
°C

) 
Fr

eq
ue

nc
y 

ϖ
 

Fr
eq

ue
nc

y 
 ϖ

Fr
eq

ue
nc

y 
ϖ

0 50 100 150
0

2

4

6

8

0.0 0.5 1.0 1.5
0

50

100

150

200

250

skew angle = 0 deg.
skew angle = 30 deg.
skew angle = 45 deg.

mode (2, 1)

mode (1, 2)

mode (1, 1)

mode (2, 1)

mode (1, 2)

mode (1, 1)

mode (2, 1)

mode (1, 2)

mode (1, 1)

Temperature (°C) Temperature (°C)

Temperature (°C)(wmax / h)(a) (b)

(c) (d)

Fig. 5. Stability and vibration characteristics of thermally stressed simply supported five-layered angle-ply [451/�451/451/�451/451] plate

for various skew angles c (a=b ¼ 1; a=h ¼ 100:0; non-dimensional frequency, $ ¼ oa2=p2h
ffiffiffiffiffiffiffiffiffiffiffiffi
r=ET

p
0). (a) Static thermal postbuckling

path, (b) temperature-frequency curves (c ¼ 01), (c) temperature-frequency curves (c ¼ 301) and (d) temperature-frequency curves

(c ¼ 451).
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influences of fiber orientation, skew angle, and boundary condition on the vibration characteristics of
thermally stressed composite plate. Zero natural frequencies are observed at the instability points, because of
its singularity. From the above study, the following conclusions may be drawn:
�
 The primary postbuckling path becomes unstable at certain amplitude (wmax/h) depending on skew angle,
fiber orientation and boundary condition of the composite plate. This instability is termed as ‘‘secondary
instability’’ and is associated with redistribution of buckling mode.

�
 The frequency corresponding to first mode (1, 1) decreases with the increase in temperature and becomes

zero at the first bifurcation point, after which it increases monotonically with the increase in temperature.

�
 The frequencies corresponding to higher modes (1, 2) and (2, 1) decrease monotonically in the postbuckling

state and frequency (1, 2) approaches zero at the secondary instability point.

�
 As the temperature increases, the fundamental frequency changes to a form corresponding to next higher

mode (1, 2). The crossing of frequencies between mode (1, 1) and mode (1, 2) occurs in between primary
and secondary instability temperature. This phenomenon may be termed as ‘‘mode shifting’’ (exchange of
vibration modes).
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